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(BOLD)

• Combine echoes to improve SNR/spatially equalize functional contrast

• Echo Time Dependence Analysis

v ADVANCE AUTOMATIC DENOISING WITH ME-ICA
• ME-ICA Pipeline

• ME-ICA Outputs

• ME-ICA Web Reporting Tool

v EVENT DECONVOLUTION WITH ME-SPFM
• What are fMRI Deconvolution Methods

• ME – Formulation for fMRI Deconvolution based on SPFM

• Example / Validation Experiments



Where to go for additional information…

Intro to ME Signal Model 
+ ME-ICA Denoising

ME Formulation for fMRI 
Deconvolution of Sparse Events



Single-Echo fMRI (a.k.a. Your regular fMRI)
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Multi-Echo fMRI

Time [s]

…

Now, we have Ne (e.g., 3) Time series per voxel, one per echo time (TEn):

• No SAR cost, as there are no additional excitation pulses.

• Slight lost in temporal resolution (easy to overcome with Multi-Band).

• Slight lost in spatial resolution: to ensure sufficient signal levels in last 
echo.
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Multi-Echo fMRI (II)

TE1 TE2 TE3

16 907 907 90716 16



Signal Model

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Signal in voxel x, at time point t, measured at echo time TE

Captures local fluctuations in field 
inhomogeneity (including BOLD)

So x, t( ) = So x( )+ΔSo x, t( )

ΔSo x, t( ) << So x( ),∀x

Captures local fluctuations due to T1 
changes (e.g., inflow) and HW instabilities

R2
* x, t( ) = R2* x( )+ΔR2* x, t( )

ΔR2
* x, t( ) << R2* x( ),∀x

+ Noise
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How to Compute Spatial Maps of So and T2
*

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

So x, t( ) = So x( )+ΔSo x, t( )

R2
* x, t( ) = R2* x( )+ΔR2* x, t( )

By definition, the average across time of ΔSo(x,t) and ΔR2*(x,t) are zero, 
and then it follows that the average signal across time for a given voxel 
(x) and echo time (TE) is: 

S x,TE( ) = So x( ) ⋅e−R2
* x( )⋅TE

log S x,TE1( )( ) = −R2* x( ) ⋅TE1 + log So x( )( )
log S x,TE2( )( ) = −R2* x( ) ⋅TE2 + log So x( )( )
log S x,TE3( )( ) = −R2* x( ) ⋅TE3 + log So x( )( )
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%
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Linear 
system of 
equations for 
3 echoes

log S x,TE( )( ) = log So x( ) ⋅e−R2
* x( )⋅TE( )

log S x,TE( )( ) = −R2* x( ) ⋅TE + log So x( )( )
y(x,TE)      =    a(x) * TE  +     b(x)



Static So Map (s0v.nii) Static T2* Map (t2sv.nii)

How to Compute Spatial Maps of So and T2
*
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How to Compute Time series of ΔSo and ΔR2
* fluctuations

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

So x, t( ) = So x( )+ΔSo x, t( )

R2
* x, t( ) = R2* x( )+ΔR2* x, t( )

S x,TE( ) = So x( ) ⋅e−R2
* x( )⋅TE

Using a first order Taylor expansion for the exponential term: e−ΔR2
* x,t( )⋅TE ≈ 1−ΔR2

* x, t( ) ⋅TE( )

S x, t,TE( ) = So x( )+ΔSo x, t( )"
#

$
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S x, t,TE( ) ≈ S x,TE( ) 1−ΔR2* x, t( ) ⋅TE +
ΔSo x, t( )
So x( )
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Δρ x, t( ) = ΔSo x, t( ) So x( )
Δκ x, t( ) = ΔR2* x, t( ) ⋅TE

#
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S x, t,TE( )− S(x,TE) ≈ S(x,TE) Δρ x, t( )− TE
TE

Δκ x, t( )
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S(x,t,TE2) ΔSo(x,t) ΔR2*(x,t)

How to Compute Time series of ΔSo and ΔR2
* fluctuations



Motion Correction & Smoothing (6mm)
No Filtering | No Detrending

Raw Data ΔSo ΔR2*

How to Compute Time series of ΔSo and ΔR2
* fluctuations
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Combination of Multi-Echo Time series

1. Simple Summation

Ŝ(x, t) = S x, t,TEn( )
n=1

N

∑ • Noisy data at longer echoes reduce the overall gain in 
sensitivity.

We have Ne pseudo-concurrent measurements à why not simply combine them to 
reduce uncorrelated white noise present in each individual measurement?

2. Weighted Summation

Ŝ(x, t) = S x, t,TEn( )
n=1

N

∑ ⋅wv TEn( )

wv TEn( ) = TEne
−TEn T2,v

*

TEn ⋅e
−TEn T2,v

*

n∑

• Helps to spatially maximize CNR and also to recover
some signal level in regions affected by drop-out.

Posse et al., MRM 1999 

0

500

SINGLE ECHO OPTIMALLY COMBINED
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1. Simple Summation

Ŝ(x, t) = S x, t,TEn( )
n=1

N

∑ • Noisy data at longer echoes reduce the overall gain in 
sensitivity.

We have Ne pseudo-concurrent measurements, why not simply combine them to reduce 
uncorrelated white noise present in each individual measurement.

2. Weighted Summation

Ŝ(x, t) = S x, t,TEn( )
n=1

N

∑ ⋅wv TEn( )

wv TEn( ) = TEne
−TEn T2,v

*

TEn ⋅e
−TEn T2,v

*

n∑

• Optimizes CNR compared to Single Echo.
• Helps to spatially maximize CNR, by helping recover

some signal in regions with large drop-outs at
regular single echo acquisitions.

Posse et al., MRM 1999 
TS

NR

0

Combination of Multi-Echo Time series

SINGLE ECHO OPTIMALLY COMBINED
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Echo Time (TE) Dependence Analysis

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

according to these p-values. Furthermore, these F-values can be averaged,
weighted by total signal power

αυ ¼
Xn

i

ΔS2TEi ; ð4Þ

where i is the TE index, n is the total number of echoes, andΔSTEi is the co-
efficient of the reference function and the time course at TEi. This produces
two summary statistics, κ and ρ,

κ ¼

Pm

υ
αυFυ;ΔR

$
2

Pm

υ
αυ

ð4aÞ

ρ ¼

Pm

υ
αυFυ;ΔS0

Pm

υ
αυ

ð4bÞ

where v is the voxel index,m is the number of voxels in the brain. κ and ρ
reflect the goodness of fit to ΔR2* and ΔS0 models respectively and
convey a representative F value for the voxels with the largest signal

changes. F-values are weighted by signal power so that κ and ρ are less
representative of F-values for the small component signal changes,
which are more affected by ICA estimation error. κ and ρ are used to
rank how well components of linear models (here corresponding to ICA
component time courses) agree with signal changes described by ΔR2*
and ΔS0 signal models.

Methods

Subjects

Nine right-handed healthy volunteers participated in the study
(7 males, 2 females). Informed consent was obtained under an
approved National Institute of Mental Health protocol.

Data acquisition

Imaging was performed on a General Electric (GE) 3 Tesla Signa
HDx MRI scanner (Waukesha, WI). The scanner's body coil was
used for RF transmission, and an 8-channel receive-only head coil
(GE, Waukesha, WI) was used for signal reception. High-order shim-
ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE se-
quence (FOV 240mm, 224×224 in-plane resolution, TI 725 ms, SENSE

Fig. 1. Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change) signals as a function of echo time (TE). The left column shows how the signal evolves for
non-BOLD effects and the right column shows how the signal evolves for BOLD effects. The top row shows the signal during state x (no activation) and state y (activation). This top
row demonstrates how the decay curves between rest and activation change in a different manner depending on if there is a change in (a) S0 or (b) R2*. The middle row shows the
difference (y−x) signal for (c) change in S0, and (d) change in R2*. The bottom row shows the percent signal change (y−x)/0.5(x+y) for (e) change in S0, and (f) change in R2*.

1761P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

Echo Time

S(
x,t

,T
E)

Let’s assume that a given voxel (x) and time (t) …. So(x,t)=5000 and T2*(x,t)=30ms

Kundu et al., NeuroImage 2012
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where v is the voxel index,m is the number of voxels in the brain. κ and ρ
reflect the goodness of fit to ΔR2* and ΔS0 models respectively and
convey a representative F value for the voxels with the largest signal

changes. F-values are weighted by signal power so that κ and ρ are less
representative of F-values for the small component signal changes,
which are more affected by ICA estimation error. κ and ρ are used to
rank how well components of linear models (here corresponding to ICA
component time courses) agree with signal changes described by ΔR2*
and ΔS0 signal models.

Methods

Subjects

Nine right-handed healthy volunteers participated in the study
(7 males, 2 females). Informed consent was obtained under an
approved National Institute of Mental Health protocol.

Data acquisition

Imaging was performed on a General Electric (GE) 3 Tesla Signa
HDx MRI scanner (Waukesha, WI). The scanner's body coil was
used for RF transmission, and an 8-channel receive-only head coil
(GE, Waukesha, WI) was used for signal reception. High-order shim-
ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE se-
quence (FOV 240mm, 224×224 in-plane resolution, TI 725 ms, SENSE

Fig. 1. Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change) signals as a function of echo time (TE). The left column shows how the signal evolves for
non-BOLD effects and the right column shows how the signal evolves for BOLD effects. The top row shows the signal during state x (no activation) and state y (activation). This top
row demonstrates how the decay curves between rest and activation change in a different manner depending on if there is a change in (a) S0 or (b) R2*. The middle row shows the
difference (y−x) signal for (c) change in S0, and (d) change in R2*. The bottom row shows the percent signal change (y−x)/0.5(x+y) for (e) change in S0, and (f) change in R2*.

1761P. Kundu et al. / NeuroImage 60 (2012) 1759–1770S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Echo Time

S(
x,
t,T

E)

Let’s assume now, that a local change in oxygenation happens (T2
* effect)

Kundu et al., NeuroImage 2012

Echo Time (TE) Dependence Analysis
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where v is the voxel index,m is the number of voxels in the brain. κ and ρ
reflect the goodness of fit to ΔR2* and ΔS0 models respectively and
convey a representative F value for the voxels with the largest signal
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which are more affected by ICA estimation error. κ and ρ are used to
rank how well components of linear models (here corresponding to ICA
component time courses) agree with signal changes described by ΔR2*
and ΔS0 signal models.

Methods

Subjects

Nine right-handed healthy volunteers participated in the study
(7 males, 2 females). Informed consent was obtained under an
approved National Institute of Mental Health protocol.

Data acquisition

Imaging was performed on a General Electric (GE) 3 Tesla Signa
HDx MRI scanner (Waukesha, WI). The scanner's body coil was
used for RF transmission, and an 8-channel receive-only head coil
(GE, Waukesha, WI) was used for signal reception. High-order shim-
ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE se-
quence (FOV 240mm, 224×224 in-plane resolution, TI 725 ms, SENSE

Fig. 1. Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change) signals as a function of echo time (TE). The left column shows how the signal evolves for
non-BOLD effects and the right column shows how the signal evolves for BOLD effects. The top row shows the signal during state x (no activation) and state y (activation). This top
row demonstrates how the decay curves between rest and activation change in a different manner depending on if there is a change in (a) S0 or (b) R2*. The middle row shows the
difference (y−x) signal for (c) change in S0, and (d) change in R2*. The bottom row shows the percent signal change (y−x)/0.5(x+y) for (e) change in S0, and (f) change in R2*.

1761P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Echo Time

ΔS
(x
,T
E)

We could then use the difference between two curves to examine which is the optimal TE 
to maximize BOLD contrast

Kundu et al., NeuroImage 2012

Echo Time (TE) Dependence Analysis
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ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE se-
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Fig. 1. Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change) signals as a function of echo time (TE). The left column shows how the signal evolves for
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1761P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Echo Time

ΔS
(x
,T
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/S
(x
,T
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Most importantly for our discussion, for T2* signal changes, there is a linear relationship 
between echo time and measured signal (in terms of signal percent change)

Kundu et al., NeuroImage 2012

Echo Time (TE) Dependence Analysis



S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Kundu et al., NeuroImage 2012

Changes in R2* scale 
linearly with echo 

time

Let’s now examine what happens when there 
is a change in So (T1 effect)
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Echo Time (TE) Dependence Analysis



S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Kundu et al., NeuroImage 2012

This time the difference between both curves 
looks very different

Echo Time
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Changes in R2* scale 
linearly with echo 

time
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Echo Time (TE) Dependence Analysis



S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Kundu et al., NeuroImage 2012

In term of signal percent change, changes in 
So have a flat dependence with echo time
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S x, t,TE( ) = So x, t( )e−R2
* x,t( )⋅TE

Kundu et al., NeuroImage 2012

In term of signal percent change, changes in 
So have a flat dependence with echo time
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Echo Time (TE) Dependence Analysis



[4] Compute Avg. Metric for each model

Kundu et al., NeuroImage 2012

TE1

TE2

TE3

[1] Voxel-wise Fit against all TEs

[2] Voxel-wise Goodness of Fit to R2* Model

FR2*
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linearly with TE
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Echo Time (TE) Dependence Analysis
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ME-ICA Denoising: Introduction

FSL Documentation: http://fsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdf
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EDA techniques for FMRI
• are mostly multivariate

• often provide a multivariate linear decomposition:  

Data is represented as a 2D matrix and 
decomposed into factor matrices (or modes)

http://fsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdf
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maps show that ME-ICA de-noising, without band pass filtering, re-
veals greater functional connectivity to gray matter clusters than
de-noising with standard noise regressors and band pass filtering.
Axial views of R2 maps for insula and hippocampus connectivity
show that the de-noising methods produce similar connectivity pat-
terns proximal to the seed, but ME-ICA de-noising exposes greater
long distance correlation. With ME-ICA de-noising, the insula shows
greater correlation to premotor and cingulate regions, hippocampus
shows greater correlation to premotor and sensory regions, and
brainstem shows greater correlation to frontal and parietal regions.
T-maps show that T-statistics are much higher for correlation with
ME-ICA de-noising than for correlation with standard de-noising
and band pass filtering.

Application to group level correlation maps

Group-level connectivity was evaluated using one-sample T-tests
of the individual-level correlation maps from standard and ME-ICA
based de-noising. Unthresholded group T-maps for hippocampus
and brainstem connectivity are shown in Fig. 8 for ME-ICA and stan-
dard de-noising. The group T-maps based on low κ de-noising
showed much higher T-statistics for connected regions than the
group T-maps based on standard de-noising. This indicated that (Z-
transformed) correlation coefficients based on ME-ICA were more
consistent across subjects than Z-transformed correlation coefficients
based on standard de-noising. Comparing Figs. 7 and 8 shows that for
maps based on ME-ICA de-noising, the regions of higher group T-

Fig. 4. For a representative subject, κ score vs (a) ICA rank (variance explained), and (b) rank by κ (κ spectrum). The κ spectrum, is an L-curve with two distinct regimes: high κ
(κ>20) and low κ (κb20), with low κ components on a linear tail. (c) κ spectra for 8 subjects. (d) First 12 ME-ICA components ranked by κ for a representative subject. Each
panel shows the time course and thresholded ΔR2* map. Components are annotated with κ-score, ρ-score, and ICA component number. All high κ components are clearly functional
networks.
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Fig. 5. For a representative subject, ρ score vs (a) ICA rank (variance explained), and (b) ρ rank (ρ spectrum). The ρ spectrum, like the k-spectrum, is an L-curve with two distinct
regimes: high ρ (appx. ρ>20) and a linear tail with low ρ (appx. ρb20). (c) ρ spectra for 8 subjects. (d) First 8 ME-ICA components ranked by ρ for a representative subject. Each
panel shows the time course and thresholded % ΔS0 map. Components are annotated with κ-score, ρ-score, and ICA component number. All high ρ components are clearly artifacts.

Fig. 6. Components with κ scores near κ thresholds are correlated to low-frequency RVT time courses. Components are annotated with κ score, ρ score, and ICA component number.
TE-dependence maps for ΔR2* and ΔS0 models show high ΔR2* localized to non-gray matter regions.

1766 P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

Kundu et al., NeuroImage 2012
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ME-ICA Denoising: Pipeline

Kundu et al., NeuroImage 2012
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ME-ICA Denoising: Pipeline

Kundu et al., NeuroImage 2012; Kundu et al. 2013 PNAS; Olafsson et al. NeuroImage 2015

• Uses PCA Decomposition (orthogonality).
• Yet, estimation of model order (Ncomp) is not based on variance, 

but on κ and ρ thresholds.
• κthr = f(κelbow, κdaw) ; Default κdaw = 10
• ρthr = f(ρelbow, ρdaw) ; Default ρdaw = 1
• SELECTION RULE: κ > κthr are kept
• SELECTION RULE: ρ > ρthr are kept

• Uses fast-ICA algorithm (spatial independence).
• Component Characterization includes:

• Variance Explained
• κ (“BOLD likeliness”)
• ρ (“Non-BOLD likeliness”)
• Nvoxels that significantly fit the So model
• Nvoxels that significantly fit the R2

* model
• Spatial overlap (D) between ICA map and FR2

* map
• Spatial overlap (D) between ICA map and FSo map
• Other…

If κc < ρcà Discard c

If Nso,c < NR2,c à Discard c

If Dso,c < DR2,c à Discard c
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ACCEPTED IGNORED MID-κ REJECTED

Denoised Time series



ME-ICA Denoising: Primary Inputs / Outputs

q T2* Static Map:                                                      t2v.nii
q So Static Map:                                                        s0v.nii
q Optimally Combined time series:                       ts_OC.nii
q Denoised time series:                                           dn_ts_OC.nii
q Spatial Maps for all ICA components:                betas_OC.nii
q Spatial Maps for Accepted Components only: betas_hik_OC.nii
q Time series for all PCA Components:                 mepca_mix.1D
q Time series for all ICA Components:                  meica_mix.1D
q Summary of ICA Decomposition:                        comp_table.txt

q List of accepted components

q List of rejected components

q List of Mid-k components

q List of ignored components

q Kappa and Rho values for all components

q Total Variance Explained by the ICA decomposition

ME-ICA Software available with AFNI: http://afni.nimh.nih.gov/afni

Latest updates available at: https://github.com/ME-ICA

q Minimum: fMRI Datasets for all echoes, echo times

q Extras:        Anatomical, Pre-processing options, kdaw, rdaw, IN
PU

TS
OU

TP
UT

S

http://afni.nimh.nih.gov/afni
https://github.com/ME-ICA


ME-ICA Denoising: Web Reporting Tool

(Ben Gutierrez) available at: https://github.com/BenGutierrez/Meica_Report

https://github.com/BenGutierrez/Meica_Report


Agenda

v WHAT IS MULTI-ECHO (ME) FMRI

v BASIC OPERATIONS WITH ME DATA
• Compute static So and T2

*
Maps

• Compute voxel-wise time-series of So (Non-BOLD) and T2
* 

(BOLD)

• Combine echoes to improve SNR/spatially equalize functional contrast

• Echo Time Dependence Analysis

v ADVANCE AUTOMATIC DENOISING WITH ME-ICA
• ME-ICA Pipeline

• ME-ICA Outputs

• ME-ICA Web Reporting Tool

v EVENT DECONVOLUTION WITH ME-SPFM
• What are fMRI Deconvolution Methods

• ME – Formulation for fMRI Deconvolution based on SPFM

• Example / Validation Experiments



DETAILED PARADIGM

Time
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TRADITIONAL ANALYSIS

There are experimental scenarios 
where event timing might be missing:
• Naturalistic paradigms
• Clinical studies (e.g., interictal 

events)
• Resting State 

HRF MODEL

DATA PRE-PROCESSING
& 

DECONVOLUTION

Time

FMRI DATA

Time

Deconvolution methods are an alternative in such scenarios:

What are deconvolution methods?
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If one assumes the underlying activity-inducing signal to consist of brief, sparse
events, then the formulated deconvolution problem can be solved using LASSO
regularization:

∆0) = argmin∆)
1
2 . −-∆) :: + < ∆) =

Error Minimization Term

L1-Norm Regularization 
(Sparseness)

3dPFM

Single Echo Sparse Free 
Paradigm Mapping Algorithm

Deconvolution Formulation for Singe-Echo fMRI
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• 10 Subjects (5M/5F)
• GRE – EPI @ 3T / 32 Channel Coil

Listen to an audio clip and select instrument 
being played from the ones displayed on the 
screen. 

Passive viewing of dots patterns resembling 
different types of biological motion.

Passive viewing of images of houses

Press button at an approx. rate of 0.5Hz 
(following a counter on the screen).

READ
THIS

Silently read sentences that appear on 
the screen one word at a time.

• TE = 16.3/32.2/48.1 ms
• TR = 2 seconds

• Resolution = 3 x 3 x 4 mm3

• ASSET = 2

Rapid Event Related with 5 different tasks / 6 trials per task per run / events are approx. 4 seconds long 

SCHEMATIC OF ONE FUNCTIONAL RUN

Validation Experiments – Data Acquisition



Multi Echo - SPFM
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Nuisance Signal Regression: 

Motion, 1st Der & Physio (CompCorr)
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• ME – SPFM 
à Newly Proposed Algorithm

• SE – SPFM 
à Deconvolution results for original single-echo SPFM algorithm.

• Trial-by-Trial GLM
à ”Best” activation maps for each individual trial 

à Paradigm timing information is available

• Task – Level Task GLM 
à GOLD Standard 

à “Best” subject-wise activation map per task type. 

For each individual trial

&'(,* & &,(,*

Trial-by-Trial GLMSingle Echo - SPFM

ME-ICA

For each task

-'( & -,(

Task-Level GLM

Validation Experiments – Data Analysis



Estimated ∆R2* Reading Events
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Validation Experiments – Results (I)
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Validation Experiments – Results (2)
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• Understand the pros/cons of different formulations for the ME 
deconvolution problem.

• Explore the limitations of the algorithm in terms of  event duration, 
temporal overlap of events, etc.

• Adapt the method to accommodate spatial heterogeneity in 
hemodynamic response shape.

• Explore its application to scientifically and clinically relevant 
scenarios.
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Models Sparsity

ME – Deconvolution – Future Work



Conclusions

q Multi-echo fMRI allows to capture additional information with minimal costs in terms of 
temporal and spatial resolution.

q Such additional information can be used to:

q Increase CNR in drop-out regions (e.g., Optimal Combination of Echoes).
q Automatically separate BOLD-like from Non-BOLD-like components (ME-ICA).

q Significantly increase the sensitivity of BOLD deconvolution algorithms

q ME-ICA is a denoising methodology that combines ICA  with TE-Dependence Analysis:

q Will not clean every single artifact in the data.

q Still under development.
q Can substantially improve the SNR of the data à Quality of the results.

q ME-SPFM can help us reliably detect individual BOLD events without a-priori information 

about their timing.
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